Welcome

Before we get started...

- Display Name: First \& Last
- Program is recorded
- Turn camera off to not be in recording
- Questions
- Use chat function throughout session
- Raise hand feature

OIE Virtual
 Data
 Train in g

April 24,2024

Today's Learning

We will discuss

01 Understanding Data and Visualizations
02 selecting the Right Visualizations
03 Design Principles for Effective Visualization
04 Overview and Resources

Introductions

Russel Potter, Ph.D. Data Director for the Office of Indian Education

In the chat, please share

- Your name
- Role / District

Understanding Data

and Visualization

Race	ll	2023
Asian	34295	37936
Black	63473	72072
Hispanic	526978	568407
Native American	47315	53218
Pacific	4216	4715
Multiple Races	44174	51874
Unlisted	98	6196
White	398322	431819

Share in the chat:

-What are these data telling us?

- Is that clear?
-Why do we care?
- Are these good data?
- Does anything seem odd?

Understanding Your Data

Race	ll	2023
Asian	34295	37936
Black	63473	72072
Hispanic	526978	568407
Native American	47315	53218
Pacific	4216	4715
Multiple Races	44174	51874
Unlisted	98	6196
White	398322	431819

Identify the Big Question

- What do these data address?
- In their most basic form, what are these data for?
- How do they address it?

How has enrollment changed in the state, for each racial group?

Understanding Your Data

Race	2022	2023	Change	Percent Increase
Asian	34295	37936	3641	11\%
Black	63473	72072	8599	14\%
Hispanic	526978	568407	41429	8\%
Native American	47315	53218	5903	12\%
Pacific	4216	4715	499	12\%
Multiple Races	44174	51874	7700	17\%
Unlisted	98	6196	6098	6222\%
White	398322	431819	33497	8\%

How has enrollment changed in the state, for each racial group?

- Compare year to year
- Specify the difference
- Compare difference as proportion

Year to Year Comparison

Race	2022	2023	Change	Incrent ncrease
Asian	34295	37936	3641	11%
Black	63473	72072	8599	14%
Hispanic	526978	568407	41429	8%
Native American	47315	53218	5903	12%
Pacific	4216	4715	499	12%
Multiple Races	44174	51874	7700	17%
Unlisted	98	6196	6098	6222%
White	398322	431819	33497	8%

Raw Difference

Race	2022	2023	Change	Percent Increase
Asian	34295	37936	3641	11%
Black	63473	72072	8599	14%
Hispanic	526978	568407	41429	8%
Native American	47315	53218	5903	12%
Pacific	4216	4715	499	12%
Multiple Races	44174	51874	7700	17%
Unlisted	98	6196	6098	6222%
White	398322	431819	33497	8%

Proportional Difference

Race	2022	2023	Change	lncrent Increase
Asian	34295	37936	3641	$\mathbf{1 1 \%}$
Black	63473	72072	8599	$\mathbf{1 4 \%}$
Hispanic	526978	568407	41429	$\mathbf{8 \%}$
Native American	47315	53218	5903	$\mathbf{1 2 \%}$
Pacific	4216	4715	499	$\mathbf{1 2 \%}$
Multiple	44174	51874	7700	$\mathbf{1 7 \%}$
Races	98	6196	6098	$\mathbf{6 2 2 \%}$
Unlisted	398322	431819	33497	$\mathbf{8 \%}$
White				

Questions?

Raise Your Hand!
Drop in the Chat!

Selecting the Right

 Visualization- In groups of different sizes or with different starting points...
-What does a change of 10 mean in each group?
- What does a change of 1000 mean in each group?
- If a change is not the same thing for to the data story you're telling...

PRINCIPLE:

Use proportions when dealing with populations of different sizes

- Discrete
- Only specific values in a range are possible
- Countable, but indivisible
- Decimals usually don't mean anything
- People, grade-levels, dates are usually discrete
- Use bar graphs to display discrete data
- Bars don't touch
- Data isn't continuous
- Continuous
- Any value in a given range is possible
- Less countable, but infinitely divisible
- Decimals have reasonable values
- Time, money, age, height are usually continuous
- Use Histograms for continuous data
- Bars touch
- Data has no 'gaps'

- Categorical against Discrete
- Race and Counts
- Age and Scores
- Gender and Height
- Describe with Numbers

Types of Bar Graph

- Horizontal
- Nominal and Categorical Data
- Sort data by
- greatest to least or least to greatest
- target datum at the top
- Vertical
- Ordinal or Sequential data
- Order time-data left-to-right
- Groupings in logical order
- If you have buckets, use a vertical bar chart

Ratio of Students Passing ELA

- When the total or aggregate is important but comprises smaller categorical groups.
- All the data for a value in one column.
- Illustrates the composition of the total value
- May occlude the details of parts that make up the population or sample.
- Comparing data year to year

- Categorical against Proportion
- Only 2-3 Categories
- Gender
- Pass/Fail
- Approve/Disapprove/No Opinion
- Area is hard to judge
- Needs to be accurate
- Difference must be clear, if any
- Big divisions are vertical
- Keep it flat

Exploding Pie Charts

- Exploding a pie chart with improve clarity.
- Beware:
-Too many categories
- Especially if differences aren't clear or useful
-Too much explosion
- A little goes a long way

Passing Ratio by AIAN Population Ratio

-Comparing two potentiallyrelated numeric sets

- FRPL and Proportion of Passing
- Height and weight
- Math score and English Score

Questions?

Raise Your Hand!
Drop in the Chat!
-Take 5-10 Minutes

- Visualizations produced for the Comprehensive Needs Assessment (CNA)
- Think about these questions while you're looking at the CNA:
- How useful is it?
- How readable is it?
- Is it good?

Principles for Effective
 Visualization

Passing Ratio by AIAN Population Ratio

-Where you place the data influences the viewer
-The shape of the data and the intended story should control placement.
-Find the outliers
-Find the trends
-Which direction is "good"?

- How does changing the placement...
- Help or hide the outliers?
- Help or hide the trend?
-Change the story?

-Trend lines influence the easy-to-read side of the chart
- Negative trendlines should usually be on the left side of the page
- Keep the 'above the line' area larger for betting impact
- What the trendline bounds influences how we see the data.
- There's a lot less "above" the line on this option.
- Maybe "above" isn't what you want
- Sometime the story is under the line

- Positive trendlines should be on the right side of the page - Put the story in the 'good' section of the page

- Make sense
- Distinct
- Data Viz Color Palette Generator
- Consistent

-The story should be bounded by the visualization
- If left to right, then 'positive' is also left to right
- Read top down, then 'positive' is higher on the page.
- There's always a good reason to do it another way.

Principles of good visualization

- Above all else show data.
- Maximize the data-ink ratio.
- Erase non-data-ink.
- Erase redundant data-ink.
- Revise and edit
- Data Ink: the non-erasable core of the visualization
- Data Ink Ratio: the data ink divided by the total ink used to print the graphic.
- Get rid of EVERYTHING that doesn't add to the clarity.

That's Not Data

- Focus on the content
- Lighten labels
- Remove borders
- Lighten or remove lines
- Remove anything redundant
"Never underestimate your audience. It's the most common mistake made by presenters. It is not about you anymore. It's about your audience's relationship with your content."
- -Edward Tufte
- That's not data:
- Grid lines
- Axis values/ticks
- Color schemes

Chart Junk: Example 1

Enrollment Changes

Chart Junk: Example 2

- Background color

Calories per 100 g

- Grey background
- Category duplication
-Type of food
-...for different foods
- Borders
- Shading/3D effects
- Colors aren't sensible (focus!)
- Unembedded data/ Y -axis
- Good visualization is a process
- Many options for any datum
- Try, edit, repeat
- Use your resources
- Graphic Designers
- Editors
- Don't let perfect be the enemy of good
- You can spend hours on anything
- Be conscious of your investment
- If it works, move on

Recap and Resources

- Identify the big question
- Seek the best visualization
-What tells the story best?
- Compare 2 values
- Difference of 2 values
- Proportional change
-Types of visualizations
- Bars and histograms
- Pie Charts
- Scatterplots
- Good visualization principles
- Position and Color
- Simplicity \& Flatness
- Be reasonable with your resources: It's a process
- Maximize data-ink ratio

The Visual Display of Quantitative Information, Edward R. Tufte

Breakout
Discussions

- What are you taking away from this training?
- How will you apply what you've learned in your grant work?
- What else do you need to know?

Don't forget, all data training recordings are on our website!

Scan the QR code or visit www.azed.gov/oie/professional-learning-resources

Feedback Survey

