

Mathematics Item Specifications

GRADE 7

Table of Contents
Introduction 4
Item Development Process 5
Test Construction Guidelines 5
Blueprint 6
Depth of Knowledge (DOK) 6
Calculators 6
Item Formats 7
Arizona Math Standards Grade 7 10
Grade 7 Item Specifications 13
Expressions and Equations 13
7.EE.A. 1 13
7.EE.A. 2 14
7.EE.B. 3 15
7.EE.B.4, 7.EE.B.4a, and 7.EE.B.4b 16
Geometry \& Statistics and Probability 18
7.G.A. 1 18
7.G.A. 2 19
7.G.A. 3 20
7.G.B.4 21
7.G.B. 5 22
7.G.B.6 23
7.SP.A. 1 25
7.SP.A. 2 26
7.SP.B. 3 27
7.SP.B. 4 29
7.SP.C. 5 30
7.SP.C. 6 31
7.SP.C.7, 7.SP.C.7a, and 7.SP.C.7b 32
The Number System 34
7.NS.A.1, 7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1c, and 7.NS.A.1d 34
7.NS.A.2, 7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c, and 7.NS.A.2d 36
7.NS.A. 3 38
Ratio and Proportional Relationships 39
7.RP.A. 1 39
7.RP.A.2, 7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c, and 7.RP.A.2d 40
7.RP.A. 3 42

Introduction

Arizona's Academic Standards Assessment (AASA) of English Language Arts and Mathematics is Arizona's statewide achievement test. AASA assesses the Arizona English Language Arts Standards and Arizona Mathematics Standards adopted by the Arizona State Board of Education in December 2016. AASA will inform students, teachers, and parents about preparedness for college and careers upon graduating from high school. AASA tests are computer-based, meaning that they can better assess students' critical thinking skills and provide them with opportunities to demonstrate a deeper understanding of the materials. Computer-based testing also allows for the use of a variety of innovative items types.

During the item-development process, all AASA items are written in accordance with the Item Specifications and are reviewed and approved by a committee of Arizona educators to confirm alignment and appropriateness for inclusion in the test. AASA items are generally representative of Arizona's geographic regions and culturally diverse population. Items are reviewed for the following kinds of bias: gender, racial, ethnic, linguistic, religious, geographic, and socioeconomic. Item reviews also include consideration of issues related to individuals with disabilities. Arizona community members also have an opportunity to review items for issues of potential concern to members of the community at large. Reviewers are asked to consider the variety of cultural, regional, philosophical, political, and religious backgrounds throughout Arizona, and then to determine whether the subject matter will be acceptable to Arizona students, families, and other members of Arizona communities.

This AASA Item Specifications is a resource document that defines the content and format of the test and test items for item writers and reviewers. Each Item Specifications document indicates the alignment of items with the Arizona Mathematics Standards. It also serves to provide all stakeholders with information about the scope and function of assessment items. This document can also serve to assist educators to understand how assessment items are developed in alignment with the standards for English language arts and math. These item specifications for AASA are intended to provide information regarding standards, item formats and response types. The descriptions of math blueprints and depth of knowledge in this document are meant to provide an overview of the test. Item specifications are meant for the purposes of assessment, not instruction. They are not intended to be tools for instruction or the basis for curricula. AASA has a test blueprint that was developed by Arizona and is different from any other state or consortium testblueprint.

For the math portion of AASA, all of the test questions are aligned to the mathematic content standards for these subject areas. Any item specifications that are absent for standards listed in this document may be under development. This document does not endorse the exclusion of the instruction of any grade-level content standards. The test will ask questions that check a student's conceptual understanding of math as well as their procedural skills. These items have been written to be free from bias and sensitivity, and widely vary in their degree of difficulty.

Item Development Process

AASA items go through a rigorous review before they are operational. When an item is "operational" it means it is used to determine a student's score on the assessment. This is a description of the process every item must go through before it is operational on AASA.

Sample tests are available online for the math portion of AASA. To access the AASA Sample Tests, go to: https://home.testnav.com/, click on "Arizona", then click on "Mic Check and Sample Tests".

Test Construction Guidelines

The construction of the AASA assessment is guided by the depth and rigor of the Arizona College and Career Ready Standards. Items are created to address key components of the standards and assess a range of important skills. The AASA Blueprint provides an overview of the distribution of items on the AASA according to the standards. The standards for Math Practices are embedded within all AASA items. Further, the AASA blueprint outlines the Depth of Knowledge distribution of items.

Blueprint

Grade 7 AASA Blueprint 2016 Standards		
Reporting Category	Min.	Max.
Ratios \& Proportions	19%	23%
The Number System	19%	23%
Expressions \& Equations	23%	27%
Geometry and Statistics \& Probability	27%	35%
Geometry	15%	19%
Statistics and Probability	12%	16%

Depth of Knowledge (DOK)

DOK refers to the level of rigor or sophistication of the task in a given item, designed to reflect the complexity of the Arizona Mathematics Standards. Items at DOK level 1 focus on the recall of information, such as definitions, terms, and simple procedures. Items at DOK 2 require students to make decisions, solve problems, or recognize patterns; in general, they require a greater degree of engagement and cognitive processing than items at DOK 1. Items at DOK 3 feature higher-order cognitive tasks that assess students' capacities to approach abstract or complex problems.

Percentage of Points by Depth of Knowledge (DOK) Level			
Grade 7	DOK Level 1	DOK Level 2	DOK Level 3
	$10 \%-20 \%$	$60 \%-70 \%$	$12 \%-30 \%$

For more information on DOK go to https://www.azed.gov/assessment/aasa.

Calculators

Arizona Desmos Scientific Calculator is permitted for the paper-based and computer-based assessment for Grade 7 Math.

Item Formats

The AASA Assessments are composed of item formats that include traditional multiplechoice response items and technology-enhanced response items (TEI). TEls are computerdelivered response items that require students to interact with test content to select, construct, and/or support their responses. TEls are better able to assess a deeper level of understanding.

These are the different types of items, including TEls, that may appear on the Math computer based assessment for AASA:

- Bar Graph
- Choice
- Equation Editor
- Fraction Model
- Gap Match
- Hot Spot
- Inline Choice
- Match Table Grid
- Point Graph
- Shape Transformation

For paper-based assessments (including those for students with an IEP or 504 plan that specifies a paper-based accommodation), TEls will be modified so that they can be scanned and scored electronically or human-scored.

See the table below for a description of each item type. In addition, for examples of each response item format described, see the AASA Sample Tests. To access the AASA Sample Tests, go to: https://home.testnav.com/, click on "Arizona", then click on "Mic Check and Sample Tests".

Item Format	Description
Bar Graph	Bar Graph Interaction allows the student to drag bars vertically or horizontally along numerical values. Individual bars, histograms, and clusters are supported.

Item Format	Description
Choice	Choice (also called Multiple Choice or Choice Interaction) allows the student to choose the correct answer(s) from pre-set responses.
Equation Editor	Equation Editor allows the student to use a palette of buttons to enter a numerical response or to create mathematical expressions.
Fraction Model	Fraction Model allows the student to divide a shape (circle or rectangle) into varying numbers of segments by clicking a 'Fewer' or 'More' button and select those segments, which shades those segments with a solid color.
Gap Match	Gap Match allows the student to drag text or images (also called choices) to a gap (a location on a background image).
Hot Spot	An Inline Choice item is like a fill-in-the-blank item where the student selects a image. single text option from a drop-down menu within a table or inline text. The item may contain multiple blanks.
lice the student to select one or more areas called hot spots on an	

Item Format	Description
Match Table Grid	The Match Table Grid interaction allows students to select radio buttons or check checkboxes in cells to indicate a match between the column and row labels.
Point Graph	Point Graph allows the test-taker to plot points, line segments, continuous lines, and/or polygons. Point Graph items can use one or multiple graph interactions (composite graphs).
Shape Transformation	Shape Transformation allows the test-taker to choose one of four variants of a single shape, drag it onto a four-quadrant grid, and position it on the grid.

Arizona Math Standards Grade 7

Ratio and Proportion (RP)		
7.RP.A Analyze proportional relationships and use them to solve mathematical problems and problems in real-world context.	7.RP.A. 1	Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.
	7.RP.A. 2	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
	7.RP.A. 3	Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).
The Number System (NS)		
7.NS.A Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers except division by zero.	7.NS.A. 1	Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world context. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world context. d. Apply properties of operations as strategies to add and subtract rational numbers.

7.NS.A (cont.)	7.NS.A. 2	Multiply and divide integers and other rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world context. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world context. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0 's or eventually repeats.
	7.NS.A. 3	Solve mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.
Expressions and Equations (EE)		
7.EE.A Use properties of operations to generate equivalent expressions.	7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
	7.EE.A. 2	Rewrite an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."
7.EE.B Solve mathematical problems and problems in real-world context using numerical and algebraic expressions and equations.	7.EE.B. 3	Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. For example, If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$ per hour.
	7.EE.B. 4	Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

Geometry (G)		
7.G.A Draw, construct, and describe geometrical figures, and describe the relationships between them.	7.G.A. 1	Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
	7.G.A. 2	Draw geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
	7.G.A. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures.
7.G.B Solve mathematical problems and problems in real-world context involving angle measure, area, surface area, and volume.	7.G.B. 4	Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
	7.G.B. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure.
	7.G.B. 6	Solve mathematical problems and problems in a real-world context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Solve mathematical problems and problems in realworld context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.
Statistics and Probability (SP)		
7.SP.A Use random sampling to draw inferences about a population.	7.SP.A. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
	7.SP.A. 2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
7.SP.B Draw informal comparative inferences about two populations.	7.SP.B. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

7.SP.B (cont.)	7.SP.B. 4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventhgrade science book are generally longer than the words in a chapter of a fourth-grade science book.
7.SP.C Investigate chance processes and develop, use and evaluate probability models.	7.SP.C. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
	7.SP.C. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
	7.SP.C. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies. If the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

Grade 7 Item Specifications

Expressions and Equations

7.EE.A. 1

Content Standards	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
Explanations	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers except division by zero.
Content Limits	Using negative numbers and multiple operations should be emphasized to distinguish from 6.EE.3 Linear expressions Do not use the word "simplify" in items - wording for items using the EQ response mechanism must be precise in order to elicit a correct form of the expression (i.e. use "by combining all like terms" so that the given expression is not a correct answer)
Context	
Students will be required to perform operations to	
construct equivalent expressions.	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify properties of operations used to add, subtract, factor, and expand linear expressions with integer coefficients.	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with integer coefficients.
Proficient	Highly Proficient
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients and interpret the meaning in a real-world context.

7.EE.A. 2

Content Standards	Rewrite an expression in different forms and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."	
Explanations	Use properties of operations to generate equivalent expressions.	
Content Limits	Rational numbers Linear expressions with an unknown	
Context	Context is required.	
Sample Task Demands		Common Item Form
Students will be required to given an expression within a context, identify an equivalent expression that shows a feature of that context.		- Equation Response - Multiple Choice Response - Multi-Select Reponse - Proposition Response
Students will be required to given a context and an expression with different values than given in the context, interpret part of the expression that is not found in the context.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify an expression in different forms.	Identify an expression in different forms and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a=1.05 a$ means that "increase by $5 \% "$ is the same as "multiply by 1.05."
Proficient	Highly Proficient
Rewrite an expression in different forms and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a=1.05 a$ means that "increase by $5 \% "$ is the same as "multiply by 1.05."	Rewrite an expression in different forms and explain the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a$ $=1.05 a$ means that "increase by 5\%" is the same as "multiply by 1.05."

7.EE.B. 3

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in one form.	Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate.
Proficient	Highly Proficient
Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. For example, If a woman making \$25 an hour gets a 10\% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$ per hour.	Create problems with a real-world context given multi- step equations with positive and negative rational numbers. Convert between forms as appropriate and interpret the reasonableness of answers.

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are integers. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are integers.	Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are integers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are rational numbers. Graph the solution set of the inequality.
Proficient	Highly Proficient
Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve real-world problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, explaining the sequence of the operations used in each approach. b. Solve real-world problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

Geometry \& Statistics and Probability

7.G.A. 1

Content Standards	Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
Explanations	Draw, construct and describe geometrical figures and describe the relationships between them.
Content Limits	Two-dimensional polygons Keep any conversions within one system (e.g., inches to feet is okay but inches to meters is not okay).
Context	Context is allowed.
Students will be required to find the length of a side or	
measure of area/perimeter given a shape and a scale	
factor.	
Students will be required to find the scale factor given	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Solve problems involving scale drawings of geometric figures, by identifying the scale.	Solve problems involving scale drawings of geometric figures, with a given scale.
Proficient	Highly Proficient
Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	Solve complex problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

7.G.A. 2

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Classify geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Identify geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
Proficient	Highly Proficient
Draw geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Draw complex geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, explaining when the conditions determine a unique triangle, more than one triangle, or no triangle.

7.G.A. 3

Content Standards	Describe the two-dimensional figures that result from slicing three- dimensional figures.
Explanations	Draw, construct, and describe geometrical figures, and describe the relationships between them.
Content	
Limits	Simited to right prisms and pyramids up to ones with a hexagonal base. Diagonals are limited to slices which will result in shapes that have been described in previous grade level standards.
Context	
Sample Task Demands	
Context is allowed.	
Students will be required to match a two-dimensional	
cross section with its (possible) 3-D figure(s).	
Students will be required to draw a two-dimensional	
figure that represents the cross section of a 3-D figure.	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify the two-dimensional figures that result from slicing three-dimensional figures parallel or perpendicular to the base.	Identify the two-dimensional figures that result from slicing three-dimensional figures.
Proficient	Highly Proficient
Describe the two-dimensional figures that result from slicing three-dimensional figures.	Describe the two-dimensional figures that result from slicing irregular three-dimensional figures.

7.G.B. 4

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify area and circumference of a circle to solve problems.	Understand and use the formulas for the area and circumference of a circle to solve problems.
Proficient	Highly Proficient
Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	Understand and use the formulas for the area and circumference of a circle to solve problems and interpret the solution; explain the relationship between the circumference and area of a circle.

7.G.B. 5

| Content
 Standards | Use facts about supplementary, complementary, vertical, and adjacent angles in
 multi-step problems to write and solve simple equations for an unknown angle in a
 figure. |
| :--- | :--- | :--- |
| Explanations | Angle relationships that can be explored include but are not limited to: same-side
 (consecutive) interior and same-side (consecutive) exterior angles are
 supplementary. |
| Content | |
| Limits | Angle measurements are shown only in degrees and should not be greater than 180.
 Students should not be required to know the sum of the interior angles of any
 polygon. |
| Context | |
| Context is allowed. | |
| Students will be required to find the unknown measure
 of a supplementary, complementary, vertical, or
 adjacent angle. | |
| Students will be required to create an expression that | |
| can be used to find an unknown angle measurement. | |

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify supplementary, complementary, vertical, and adjacent angles in a figure.	Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to solve simple equations for an unknown angle in a figure.
Proficient	Highly Proficient
Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure.	Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure and explain the solution.

7.G.B. 6

Content Standards	Solve mathematical problems and problems in a real-world context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Solve mathematical problems and problems in real-world context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.
Explanations	Students understanding of volume can be supported by focusing on the area of base times the height to calculate volume. Students understanding of surface area can be supported by focusing on the sum of the area of the faces. Nets can be used to evaluate surface area calculations.
Content	3D shapes include right prisms and pyramids. Limits the base of the right prism has more than four sides, then the area of the base should be given. Context
Students will be required to find the volume or surface area of an object.	

Students will be required to find dimensions when the area, surface area, or volume is given.

Students will be required to find the volume of a cube

- Equation Response
- Table Response given the surface area. (Area of each face is limited to 100 square units)

Students will be required to find the volume of an object composed of two objects.

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify solutions mathematical problems and problems in a real-world context involving area of two- dimensional objects composed of triangles, quadrilaterals, and other polygons.	Solve mathematical problems and problems in a real- world context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Identify solutions to mathematical problems and problems in real-world context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.
Proficient	Highly Proficient
Solve mathematical problems and problems in a real- world context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Solve mathematical problems and problems in real-world context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.	Solve mathematical problems and problems in a real- world context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Solve mathematical problems and problems in real-world context involving volume and surface area of three-dimensional objects.

7.SP.A. 1

| Content
 Standards | Understand that statistics can be used to gain information about a population by
 examining a sample of the population; generalizations about a population from a
 sample are valid only if the sample is representative of that population. Understand
 that random sampling tends to produce representative samples and support valid
 inferences. |
| :--- | :--- | :--- |
| Explanations | Use random sampling to draw inferences about a population. |
| Content
 Limits | Use random sampling to draw inferences about a population. |
| Context | Context is required. |
| Students will be required to identify a valid sample
 (random,
 representative,
 population). | |
| and proportional to | |
| Students will be required to justify a chosen sampling
 method. | |

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify statistics that can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population.	Recognize that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Recognize that random sampling tends to produce representative samples and support valid inferences.
Proficient	Highly Proficient
Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	Interpret statistics that can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

7.SP.A. 2

Content Standards	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	
Explanations	Use random sampling to draw inferences about a population.	
Content Limits	Rational numbers Given dot plots should have an approximately normal distribution	
Context	Context is required.	
Sample Task Demands		Common Item Formats
Students will be required to draw inferences about a population based on a set of random samples.		- Equation Response - Graphic Response - Multiple Choice Response
Students will be required to explore the variation among a set of random samples.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Use data from a random sample to identify inferences about a population with an unknown characteristic of interest.	Use data from a random sample to identify inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.
Proficient	Highly Proficient
Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	Interpret data from a random sample to draw inferences about multiple populations with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.

7.SP.B. 3

Content Standards	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.	
Explanations	Researching data sets provides opportunities to connect mathematics to their interests and other academic subjects. Students can utilize statistic functions in graphing calculators or spreadsheets for calculations with larger data sets or to check their computations. Students calculate mean absolute deviations in preparation for later work with standard deviations. Measures of center include mean, median, and mode. The measures of variability include range, mean absolute deviation, and interquartile range.	
Content Limits	Data displays should be dot plots or box plots with approximately normal distributions	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to given sets of data displays that represent data distributions, select the set that shows the most visual overlap.		- Equation Response - Graphic Response - Multiple Choice Response - Multi-Select Response
Students will be required to given two data displays with different centers but the same variability, compute the difference in centers in terms of the mean absolute deviation and informally assess the degree of overlap.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Compare the degree of visual overlap of two numerical data distributions with similar variabilities.	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities.
Proficient	Highly Proficient
Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.	Interpret the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.

7.SP.B. 4

Content Standards	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.	
Explanations	Researching data sets provides opportunities to connect mathematics to their interests and other academic subjects. Students can utilize statistic functions in graphing calculators or spreadsheets for calculations with larger data sets or to check their computations. Students calculate mean absolute deviations in preparation for later work with standard deviations. Measures of center include mean, median, and mode. The measures of variability include range, mean absolute deviation, and interquartile range.	
Content Limits	Data displays should be distributions	plots or box plots with app
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to evaluate data displays or measures regarding evidence (center and variation, based on overlap of the data) that the data for one population is greater than another.		- Equation Response - Graphic Response - Multiple Choice Response - Multi-Select Response

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify measures of center and measures of variability for numerical data from random samples for two populations.	Use measures of center and measures of variability for numerical data from random samples to identify informal comparative inferences about two populations.
Proficient	Highly Proficient
Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.	Interpret measures of center and measures of variability for numerical data from random samples to draw comparative inferences about two populations.

7.SP.C. 5

Content Standards	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	
Explanations	Probability can be expressed in terms such as impossible, unlikely, likely, or certain or as a number between 0 and 1 as illustrated on the number line.	
Content Limits	Rational numbers Probabilities should not be given as percentages	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to identify the likelihood of a chance event occurring.		- Equation Response - Multiple Choice Response - Matching Item Response - Multi-Select Response
Students will be required to given a likelihood of an event occurring, identify a possible probability.		
Students will be required to compare probabilities as being more or less likely.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify that a probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	Identify that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
Highly Proficient	

7.SP.C. 6

Content Standards	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
Explanations	Students can perform experiments multiple times, pool data with other groups, or increase the number of trials in a simulation to look at the long-run relative frequencies.
Content	
Limits	Probabilities should not be given as percentages All numbers are whole, other than probabilities For TD1, the student should only be required to find one probability
Students will be required to approximate/estimate the	
Students will be required to predict the approximate	
relative frequency given the theoretical probability.	
frobability of a chance event by observing collected	
data (empirical/experimental probability).	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify the approximate probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency.	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and identify the approximate relative frequency given the probability.
Proficient	Highly Proficient
Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.	Explain the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

Performance Level Descriptors

Minimally Proficient	Partially Proficient
$\begin{array}{l}\text { Develop a probability model and use it to find } \\ \text { probabilities of events. Compare probabilities from a } \\ \text { model to observed frequencies. If the agreement is } \\ \text { not good, explain possible sources of the discrepancy. }\end{array}$	$\begin{array}{l}\text { Develop a probability model and use it to find } \\ \text { probabilities of events. Compare probabilities from a } \\ \text { model to observed frequencies. If the agreement is } \\ \text { not good, explain possible sources of the discrepancy. }\end{array}$
$\begin{array}{l}\text { a. Identify a uniform probability model that assigns } \\ \text { equal probability to all outcomes to determine } \\ \text { probabilities of events. }\end{array}$	$\begin{array}{l}\text { a. Use a uniform probability model that assigns equal } \\ \text { probability to all outcomes to determine probabilities } \\ \text { of events. }\end{array}$
b. Identify a probability model (which may not be	
uniform) that observes frequencies in data generated	
from a chance process.	$\begin{array}{l}\text { P. Use a probability model (which may not be uniform) } \\ \text { that observes frequencies in data generated from a } \\ \text { chance process. }\end{array}$
Proficient	$\begin{array}{l}\text { Highly Proficient }\end{array}$
$\begin{array}{l}\text { Develop a probability model and use it to find } \\ \text { probabilities of events. Compare probabilities from a } \\ \text { model to observed frequencies. If the agreement is } \\ \text { not good, explain possible sources of the discrepancy. }\end{array}$	$\begin{array}{l}\text { Develop a probability model and use it to find } \\ \text { probabilities of events. Compare probabilities from a } \\ \text { model to observed frequencies. If the agreement is } \\ \text { not good, explain possible sources of the discrepancy. }\end{array}$
a. Develop a uniform probability model by assigning	
equal probability to all outcomes, and use the model	
to determine probabilities of events. For example, if a	
student is selected at random from a class, find the	
probability that Jane will be selected and the	
probability that a girl will be selected.	

assigning equal probability to all outcomes, and use

the model to determine probabilities of events. For

example, if a student is selected at random from a

class, find the probability that Jane will be selected

and the probability that a girl will be selected.\end{array}\right\}\)

The Number System

7.NS.A.1, 7.NS.A.1a, 7.NS.A.1b, 7.NS.A.1c, and 7.NS.A.1d
$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 7.NS.A.1 Add and subtract integers and other rational numbers; represent addition } \\ \text { and subtraction on a horizontal or vertical number line diagram. }\end{array} \\ \text { 7.NS.A.1a Describe situations in which opposite quantities combine to make } 0 .\end{array}\right\} \begin{array}{l}\text { 7.NS.A.1b Understand } p+q \text { as the number located a distance }|q| \text { from } p, \text { in the } \\ \text { positive or negative direction depending on whether } q \text { is positive or negative. Show } \\ \text { that a number and its opposite have a sum of } 0 \text { (are additive inverses). Interpret } \\ \text { sums of rational numbers by describing real-world context. }\end{array}\right\}$

Minimally Proficient
Add and subtract integers and other rational numbers;
represent addition and subtraction on a horizontal or
vertical number line diagram.
a. Identify opposite quantities.
b. Identify a number and its opposite that have a sum
of 0.
c. Identify the distance between two rational numbers
on the number line as the absolute value of their

d. Identify properties of operations as strategies to add and subtract rational numbers.
a. Identify situations in which opposite quantities combine to make 0.
b. Recognize $p+q$ as the number located a distance
$|q|$ from p, in the positive or negative direction depending on whether q is positive or negative.
Identify a number and its opposite that have a sum of 0 (are additive inverses).
c. Recognize subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference.
d. Identify properties of operations as strategies to

Proficient
Add and subtract integers and other rational numbers;

a. Describe situations in which opposite quantities combine to make 0 .
b. Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world context.
c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world context.
d. Apply properties of operations as strategies to add and subtract rational numbers.

Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

Partially Proficient

促
add and subtract rational numbers.

Highly Proficient

Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
a. Interpret situations in which opposite quantities combine to make 0.
b. Explain $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world context.
c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world context.
d. Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A.2, 7.NS.A.2a, 7.NS.A.2b, 7.NS.A.2c, and 7.NS.A.2d

Performance Level Descriptors

Minimally Proficient
Multiply and divide integers and other rational
numbers.
a. Identify that multiplication is extended from
fractions to rational numbers by requiring that
operations continue to satisfy the properties of
operations, particularly the distributive property,
leading to products such as $(-1)(-1)=1$ and the rules
for multiplying signed numbers. Identify products of
rational numbers.
b. Identify that integers can be divided, provided that
the divisor is not zero, and every quotient of integers
(with non-zero divisor) is a rational number. If p and q
are integers, then $-(p / q)=(-p) / q=p /(-q)$.

c. Multiply and divide rational numbers.
d. Identify decimal form of a rational number.

Proficient

Multiply and divide integers and other rational numbers.
a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world context.
b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world context.
c. Apply properties of operations as strategies to multiply and divide rational numbers.
d. Convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0's or eventually repeats.

Partially Proficient
Multiply and divide integers and other rational numbers.
a. Recognize that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Identify products of rational numbers by describing real-world context.
b. Recognize that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Identify quotients of rational numbers by describing real-world context.
c. Use properties of operations as strategies to multiply and divide rational numbers.
d. Identify decimal form of a rational number; know that the decimal form of a rational number terminates in 0's or eventually repeats.

Multiply and divide integers and other rational numbers.
a. Explain that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world context.
b. Explain that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world context.
c. Apply properties of operations as strategies to multiply and divide rational numbers in a real-world context.
d. Convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0's or eventually repeats.
7.NS.A. 3

Content Standards	Solve mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.	
Explanations	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers except division by zero.	
Content Limits	Rational numbers Complex fractions can be used, but should contain fractions with single-digit numerators and denominators	
Context	Context is allowed.	
Sample Task Demands		Common Item
Students will be required to solve simple problems involving rational numbers given a scenario.		- Equation Response - Table Response
Students will be required to solve complex problems involving rational numbers given a scenario.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify the solution of mathematical problems four operations with rational numbers.	Identify the solution of mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.
Proficient	Highly Proficient
Solve mathematical problems and problems in real- world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.	Solve mathematical problems and problems in real- world context involving the four operations with rational numbers and interpret the solution. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.

Ratio and Proportional Relationships

7.RP.A. 1

Content Standards	Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.	
Explanations	Analyze proportional relationships and use them to solve mathematical problems and problems in real-world context.	
Content Limits	Rational numbers - some items may include one rational number and one whole number (other than 1), but the bulk of items from this standard should involve ratios expressed as fractions, including complex fractions Ratios can be expressed as fractions, with ":", or with words Units can be the same or different across the two quantities	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will ratio from table or math	find a unit rate for a given hin a situational context, em.	- Equation response - Graphic Response - Multiple Choice Response - Multi-Select Response - Table Response

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify unit rates associated with ratios involving simple fractions, including ratios of quantities measured in like units.	Compute unit rates associated with ratios involving simple fractions, including ratios of quantities measured in like units.
Proficient	Highly Proficient
Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.	Interpret unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.

7.RP.A.2, 7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c, and 7.RP.A.2d
$\left.\begin{array}{|l|l|}\hline & \text { 7.RP.A.2 Recognize and represent proportional relationships between quantities. } \\ \text { 7.RP.A.2a Decide whether two quantities are in a proportional relationship (e.g., by } \\ \text { testing for equivalent ratios in a table or graphing on a coordinate plane and } \\ \text { observing whether the graph is a straight line through the origin). }\end{array}\right\}$

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Recognize and represent proportional relationships between quantities. a. Identify two quantities in a proportional relationship. b. Identify the constant of proportionality (unit rate) in tables or graphs. c. Identify equations to represent proportional relationships. d. Identify a point (x, y) on the graph of a proportional relationship.	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship. b. Identify the constant of proportionality (unit rate) in tables, graphs, equation. c. Represent proportional relationships by equations. d. Identify what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and ($1, r$) where r is the unit rate.
Proficient	Highly Proficient
Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0,0) and $(1, r)$ where r is the unit rate.	Recognize and represent proportional relationships between quantities. a. Explain whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Interpret the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

7.RP.A. 3

Content Standards	Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).	
Explanations	Students should be able to explain or show their work using a representation (numbers, words, pictures, physical objects, or equations) and verify that their answer is reasonable. Models help students to identify the parts of the problem and how the values are related. For percent increase and decrease, students identify the starting value, determine the difference, and compare the difference in the two values to the starting value.	
Content Limits	Limit to rational numbers Units can be the same or different across the two quantities	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to calculate the solution for percent and ratio problems.		- Equation response - Graphic Response - Multiple Choice Response
Students will be required to create an expression that can be used to find a specified percent or percentage increase/decrease of a given whole.		
Students will be required to use percent increase or decrease to find two quantities given their relationship in a real world context.		
Students will be required to interpret a proportional pattern from percent increase/decrease problems as a graph or as an equation.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Use proportional relationships to solve one-step ratio and percent mathematical problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).	Use proportional relationships to solve one-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).
Proficient	Highly Proficient
Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).	Interpret proportional relationships when solving multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).

