	State of Arizona

	Department of Education

[Information Technology]
Quality Assurance Test Plan
	Maricopa County Education Service Agency

Project: MCESA QA Test Plan 1.0
	Purpose
	The QA Test Plan is a plan that encompasses the entire testing required for the MCESA project. It is the highest level testing plan that documents the testing strategy for the project, describes the general approach that will be adopted in testing, provides the overall structure and philosophy for any other required testing documents, and defines what will be tested to assure the requirements of the application are met.
Types of Quality Assurance testing will include:

· Process QA plans document how the project is meeting quality and compliance standards ensuring the right documentation exists to guide project delivery and corrective actions, and

· Requirements/application test plans document how the product, service or system meets stated business and technical requirements, and how it will work within the defined operational/business processes and work flow.

Test plans typically used for development efforts include:

· User Acceptance Testing (UAT) documents how the users, who will be supporting the application’s functionality in production, will test this new functionality prior to production installation.

Testing approaches that may be used to test or validate projects that have high risk or impact include:

· Regression Testing ensures all fixes identified during UAT were made to the system and did not impair key existing functionality.
· Prototype is a technique used either in the design, build, or testing stage to construct a model of the product, service, or system to verify a function, a design, how a particular module or program works. (We mirrored prod)
· Alpha Testing tests a new product, service, or system before implementation where it may have major impacts and the project team wants to identify major problems/bugs before implementation (or goes into production).

· Beta Testing differs from Alpha Testing in the amount of testing and clean-up that needs to be performed. The project should be ready for implementation.
· Parallel Testing occurs when the old and the new product, service, or system are running simultaneously to allow the project customer to check that the deliverable is working per specifications.

· Stress/Load Testing ensures the system will perform reliably during full production and heavy workloads.

· Operational/Business Readiness Testing walks through the operational/business processes and workflows to ensure that procedures, documentation, reconciliation and work flows are complete and correct.

	Ownership
	The QA Team Lead is responsible for ensuring that all testing plans are created and identifies them under one QA Test Plan

	When
Phase: Design

Stage: Planning
	The Project QA Test Plan is usually completed during the Design phase of the Software Delivery Life Cycle. It should be updated anytime additional information or project changes affect its content.

It is a required deliverable

	 Scalability
	The ability of an application to handle growing amounts of work.

Document Information and Approvals
[image: image1.png]
	Version #
	Date
	Revised By
	Reason for change

	1.0
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[image: image2.png]
	Approver Name
	Project Role
	Signature/Electronic Approval
	Date

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1Introduction

1Scope

1Test Objectives

1Testing Goals

1Quality

2Reliability

2Test Methodology

2Entrance Criteria

2Exit Criteria

2Test Execution

2Functional Testing

2Regression Testing

3Integration Testing

3Interface Testing

3Test Case Development

3Test Scenarios

4Defect Reporting

4Go/No-go Meeting

4Test Environment

4Software Requirements

4Testing Platform

4Assumptions and Risks

4Assumptions

5Risks

5Additional Project Documents

6Roles and Responsibilities

7Sign-off and Acknowledgement

8TFS – Defect Tracking Process

Introduction

Scope

The overall purpose of testing is to ensure MCESA website meets all of its technical, functional and business requirements. The purpose of this document is to describe the overall test plan and strategy for testing the MCESA site. The approach described in this document provides the framework for all testing related to this application. Individual test cases will be written for each version of the application that is released. This document will also be updated as required.

Test Objectives

The quality objectives of testing the MCESA application are to ensure complete validation of the business and software requirements:

· Perform detailed test planning

· Regression testing for validation
· Identify testing standards and procedures that will be used on the project

· Prepare and document test scenarios and test cases
· Manage defect tracking in TFS
· Provide testing summary reports
· Schedule Go/No Go meeting

· Require sign-offs from all stakeholders

Testing Goals

The goals in testing this application include validating the quality, usability, functionality and performance of the application. Testing will be performed from a black-box approach, not based on any knowledge of internal design or code. Tests will be designed around requirements and functionality. Another goal is to make the tests repeatable for use in regression testing during the project lifecycle, and for future application upgrades.
Quality

Quality software is reasonably bug-free, meets requirements and/or expectations, and is maintainable. Testing the quality of the application will be a two-step process of independent verification and validation. First, a verification process will be undertaken involving reviews and meetings to evaluate documents, plans, requirements, and specifications to ensure that the end result of the application is testable, and that requirements are covered. The overall goal is to ensure that the requirements are clear, complete, detailed, cohesive, attainable, and testable. In addition, this helps to ensure that requirements are agreed to by all stakeholders.

Second, actual testing will be performed to ensure that the requirements are met. The standard by which the application meets quality expectations will be based upon the requirements for ect ect …
Reliability

Reliability is both the consistency and repeatability of the application. A large part of testing an application involves validating its reliability in its functions, data, and system availability. To ensure reliability, the test approach will include positive and negative (break-it) functional tests. In addition, to ensure reliability throughout the iterative software development cycle, regression tests will be performed on all iterations of the application.

Test Methodology

Entrance Criteria
· MCESA environment is accessible by the QA team.
· All business requirements are documented and approved by the business users.

· Functionality testing has been completed by the QA team.

· All hardware needed for the test environment is available.

· The application delivered to the test environment is of reliable quality.

Exit Criteria

· All test scenarios that the testing timeframe will prevail have been completed successfully.
· Functionality testing has been completed by the QA team.

· All issues prioritized and priority 1 issues resolved.
· All outstanding defects are documented in TFS and resolved.
· Go/No-go meeting is held to determine acceptability of product.

Test Execution

The test execution phase is the process of running test cases against the MCESA application to verify that the actual results meet the expected results. Defects discovered during the testing cycle shall be entered into TFS. Once a defect is fixed, the fixed code shall be migrated into the application and regression tested.

These following testing phases shall be completed:

Functional Testing

Functional testing, or “black box” testing, focuses on the functional requirements of the application. Functional testing is performed to confirm that the application operates accurately according to the documented specifications and requirements, and to ensure that interfaces to internal components are properly working.

Regression Testing
Regression testing shall be performed to verify that previously tested features and functions do not have any new defects introduced, while correcting other problems or adding and modifying other features.
Integration Testing

Integration testing which encompasses end to end functionality will not be completed. Multiple variables such as the timeframe for this project are a significant factor.
Interface Testing
Integration testing of the common logon application menu and the modification of common logon permissions will be documented in test cases.
Test Case Development

Test case design is the central focus of a software quality assurance process. A test case is defined as a written specification describing how a single or group of business or system requirement(s) will be tested. The test case consists of a set of actions to be performed, data to be used, and the expected results of the test. The actual results of the test are recorded during test execution. Test cases will also be updated as testing proceeds.

Test Case written for this project includes the following:

· Test Step #
· Description

· Expected results

· Pass Fail
· Comments
Test Scenarios

Below are the high-level scenarios that will be tested.
	Test Objective

	Test Objective #1 –
· List all functionality to be tested

	Test Objective #2 – All

	Test Objective #3 –

	Test Objective #4 –
·

	Test Objective #5 Reports

Defect Reporting

Issues/defects are tracked for resolution with the following guidelines:

· Issues will be reported based upon documented requirements.

· Issues will be tracked by the testing team, reported to the test lead and entered into TFS.
· Issues will be fixed by the development team based on the priority/severity assigned by the test lead.

· All critical/priority 1 defects will be fixed before release to production.

See the Defect Tracking Process at the end of this document for detailed instructions on how to log and track defects in TFS
Go/No-go Meeting

Once the test team has completed the test cycle, a Go/ No-go meeting is scheduled as part of the implementation planning under launch readiness. This meeting is attended by the project manager, business team, test lead, technical lead, and any other stakeholders.

The test lead will provide a testing summary and list all outstanding unresolved defects and any associated risks with releasing the product to production. All outstanding issues are discussed at that time before a decision is made to push to production. A written sign-off form is signed by all team members as listed above. The list of outstanding issues is also attached to the sign-off form.
Test Environment

Software Requirements

Web Server: MCESA
Testing Platform

· Desktop PC – Win 7 with the following browser:

· Internet Explorer 8.0 and higher
Assumptions and Risks

Assumptions

· Project change control process in place to manage requirements.

· Testers will test what is documented in the requirements.

· Resources identified in this plan are available to test the application and resolve defects and address issues as they are raised by the test team.

· All changes to requirements will be communicated to the test team.

· The Business team has reviewed and accepted functionality identified in the business requirements and software requirements documents.

· Resources identified in this plan are available to test the application and resolve defects and address issues as they are raised by the test team.

· Project sponsors, business and technical, will provide actionable guidance on defect prioritization and resolution.
Risks

· Scope creep (last minute addition of new requirements) impacts deadlines for test team.

· Aggressive target date increases the risk of defects being migrated to production.
· Any downtime of the test system will significantly impact the testing cycle.
Additional Project Documents

All project documents are located at:
http://codevaulttfs/SAIS/Shared Documents/QA_Process_Procedure
Roles and Responsibilities

	Resource Type
	Responsibilities
	Name

	Director
	· Provides Go/No Go authorization that product is ready for release as part of implementation planning and launch process
· Prioritizes issues and defects, and manage technical resources
· Makes decisions on unresolved issues
	

	Project Manager
	· Provides guidance on the overall project

· Coordinates and develops project schedule

· Liaison with business to ensure participation and ownership

· Tracks all project activities and resources, ensuring project remains within scope

· Facilitates identifying and bringing closure to open issues

· Communicates project status
	

	Subject Matter Experts
	· Define business requirements and expected results for business acceptance

· Execute user acceptance testing
	

	
	
	

	Developer
	· Resolve defects

· Support testers
	

Sign-off and Acknowledgement

I understand that by agreeing to participate in this testing through the execution of the testing plan, I approve of the activities defined and authorize my department to participate as documented for the successful implementation of this application in our department.

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

TFS – Defect Tracking Process
	Summary:
	Screen name and short description about the defect being reported, usually providing key words with which to identify and/or search for the defect.

	Detected By:
	QA personnel

	Detected on Date:
	Date of testing

	Severity:
	Describes the degree of impact that a defect has on the operation of the application.

	Assigned To:
	Individual being assigned the defect for fixing.

	Detected in Build:
	Web Application

	Fixed in Build:
	Build ID in which the defect is fixed. Build ID is an identifier for the code release, assigned by Web Development.

	Priority:
	This field describes the impact the defect has on the work in progress and the importance and order in which a bug should be fixed.

	Status:
	Indicates the existing state of a defect, auto populates with a default of “New”

	Description:
	Enter description of defect

Add individual steps to reproduce. Include all steps and screens that were accessed.

Attach test cases
Enter exact words of the error message.

	
	

	

	
Defect resolution process:
	When the developer begins working on the defect, s/he changes status to “in progress” in TFS.

Once the defect is fixed:

1. The developer to whom the defect is assigned will update the TFS ticket.
2. The developer will reassign to QA
3. The tester will retest the submitted defect.

4. If defect passes the retest, the tester or defect manager will change Status to “Completed”.
5. Once the defect has been “Verified”, the project manager (or defect manager) will update the status to “Closed”.

	

	DEFINITIONS FOR DEFECT PRIORITY AND SEVERITY

	PRIORITY: This field describes the impact the defect has on the work in progress and the importance and order in which a bug should be fixed. This field is utilized by the developers and test engineers to prioritize work effort on the defect resolution.

	1 – Urgent Blocks Work
	Further development and/or testing cannot occur until the defect has been resolved.

	2 – Resolve ASAP
	The defect must be resolved as soon as possible because it is impairing development and/or testing activities.

	3 – Normal Queue
	The defect should be resolved in the normal prioritization and completion of defect resolution.

	4 – Low Priority
	The defect is an annoyance and should be resolved, but it can wait until after more serious defects have been fixed.

	5 – Trivial
	The defect has little or no impact to development and/or testing work.

	

	SEVERITY: This field describes the degree of impact that a defect has on the operation of the application.

	1 – Critical
	Critical loss of function. The defect results in system crashes, the failure of a key subsystem or module, a corruption or loss of data, or a severe memory leak.

	2 – Major
	Major loss of function. The defect results in a failure of the system, subsystem, or module, but the defect does not result in the corruption or loss of significant data.

	3 – Moderate
	Moderate loss of function. The defect does not result in a failure of the system, subsystem, or module, but the defect may cause the system to display data incorrectly, incompletely, or inconsistently.

	4 – Minor
	Minor loss of function, or another problem where a workaround is present. There are no data integrity issues.

	5 – Usability
	The defect is related to the system usability, is the result of non-conformance to a standard, or is related to the aesthetics of the system. There is no loss of system function.

	6 – Enhancement
	The defect is a request for an enhancement, i.e. it is not within the scope of the current project effort.

